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Highlights

We propose a mortality model that depicts the relevant pandemic effects using a threshold jump approach.

e We consider mortality jumps related to the pandemic shock and to a specific country shock to capture pandemic mortality dynamics
across countries.

Pandemic jump occurs only when a pandemic event causes significant deaths worldwide.

We analyze the effect of pandemic mortality risk on pricing a mortality-linked bond using the first Swiss Re mortality bond as an
example.
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Modeling Pandemic Mortality Risk and its Application to Mortality-
Linked Security Pricing

Abstract

To provide insights for how to deal with pandemic mortality risk, this article
introduces a mortality model that depicts the relevant pandemic effects on pricing
mortality-linked securities, using a threshold jump approach. That is, to capture
pandemic mortality dynamics across countries, we consider mortality jumps related to
the pandemic shock and to a specific country shock. Pandemic jump occurs only when
a pandemic event causes significant deaths worldwide, such as 1918 Spanish flu or
COVID-19. Then the proposed pandemic mortality model can be adjusted according to
country-specific mortality experiences. We further analyze the effect of pandemic
mortality risk on pricing a mortality-linked bond. Using the first Swiss Re mortality
bond as an example, a further derivation obtains the closed-form solution for the fixed-
coupon mortality-linked bond in the pandemic mortality framework. Finally, this study
details the impacts of pandemic mortality risk numerically by fitting the model to the
United States, England and Wales, France, Italy, and Switzerland and calculating the

fair spread of the mortality-linked bond.

Keywords: Pandemic Mortality Risk, COVID-19, Wang Transform, Mortality-Linked

Security, Threshold Jump Approach

JEL codes: G13,G17,G22



1. Introduction

Mortality uncertainty is the primary source of risk for life insurers and annuity
providers. The financial capacity of the life insurance industry to pay catastrophic death
losses from hurricanes, epidemics, earthquakes, and other natural or man-made disasters
is limited. Securitization of mortality risk is an capital solution for dealing with such
risk. As Jaffee and Russell (1997) and Froot (2001) explain, insurance securitization
may be a more efficient mechanism for financing catastrophic losses than traditional
reinsurance, because it introduces more capital and thereby enhances the ability of
insurers to deal with huge losses due to natural disasters like pandemics, hurricanes, and
earthquakes. Blake et al. (2008) caution that traditional insurance methods for managing
this risk suffer constrained capacity, so capital markets are needed to find effective
solutions, as manifested in issuances by the Swiss Reinsurance Company, the world’s
second-largest reinsurance firm. It issued a three-year mortality-linked bond in 2003
(Vita Capital I), with $400 million in coverage for institutional investors, then a second
bond (Vita Capital IT) in 2008. Both these mortality securities aimed to transfer mortality
risk away from the insurer, using a combined mortality index that measures annual
population mortality in five countries and applies predetermined weights to each
nation’s publicly reported mortality data. Vita Capital I used the annual population
mortality rates for France, United Kingdom, the United States, Italy, and Switzerland;
Vita Capital II instead relied on annual population mortality rates for the United States,
United Kingdom, Japan, Canada, and Germany. In addition, Swiss Re obtained US$200
million in coverage against North Atlantic hurricane and UK extreme mortality risk
through its Mythen Re program, introduced in 2012. It represents the first combination
of hurricane and mortality risks in a bond offering. As these developments indicate,
mortality securitization appears to be gaining popularity among life insurers as a tool to

transfer huge mortality losses to financial markets.
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However, coronavirus Disease 2019 (COVID-19) are emerging as a threat to people
in the 21st century. They are responsible for high mortality rates. Huynh et al. (2013)
pointed out that a pandemic is an outbreak of infectious disease that spreads throughout
the world and infects a significant proportion of the human population. Pandemics
arising from influenza are considered the most significant threat to the life insurance
industry. Therefore, pricing a mortality-linked bond also may benefit from a greater
understanding of pandemic events and their influence on mortality uncertainty.

In the past two decades, various mortality models have been proposed to reflect the
dynamics of mortality over time. For example, Lee and Carter (1992) pioneered the
modeling of central mortality rates, with log-linear correlations with a time-dependent
mortality factor, adjusted for age-specific effects, using two sets of age-dependent
coefficients. Cairns et al. (2006) propose a two-factor stochastic mortality model (CBD
model) for higher ages and examine the pricing of longevity bonds. The Lee-Carter and
CBD models both project mortality rates based on age and period effects. Renshaw and
Haberman (2006) extend the Lee-Carter model to consider cohort effects in mortality
modeling. Despite their contributions though, these early mortality models exclude
pandemic mortality risk and cannot explicitly capture structural changes or pandemic
mortality shocks that could cause mortality jumps, such as occurred due to the 1918
worldwide flu pandemic or COVID-19. Research increasingly acknowledges mortality
jumps though, including Cox et al. (2006), Lin and Cox (2008), Chen and Cox (2009),
Wang et al. (2013), Deng et al. (2012), Zhou et al. (2013), Lin et al. (2013), and Chen
(2014). Yang et al. (2010) use principal component analysis (PCA), and Milidonis et al.
(2011) employ a Markov regime-switching model to describe the phenomenon of
structural changes in mortality rates. Few studies address the potential impacts of
mortality shocks across countries though, with some notable exceptions. That is, Zhou

et al. (2013) propose a two-population generalization of the model offered by Chen and
3



Cox (2009) to model transitory mortality jumps. Cox et al. (2006) decompose mortality
shocks into a specific factor and a common factor. The common factor appears more
substantial, such that it causes the co-movement of the mortality indices in all countries.
Lin et al. (2013) also extend Cox et al.’s (2006) model to a general setting and
disentangle transient jumps from persistent volatilities. Unlike Cox et al. (2006), who
regard unanticipated mortality jumps as permanent shocks, Lin et al. (2013) model them
as transient jumps, with a double-jump process. Cox et al. (2006) and Lin et al. (2013)
both anticipate that the co-movement of the jump effect is a common factor in all
countries. Their models imply that mortality jumps occur simultaneously in all countries.

Another view reflects a potential dependence structure of mortality rates across
countries. For example, Li and Hardy (2011) expand the Lee-Carter model to emphasize
the importance of mortality modeling for two populations. Yang and Wang (2013)
provide multi-country mortality dynamics to capture mortality dependence across
countries, and Wang et al. (2015) introduce mortality dependence to multi-country
mortality modeling with a dynamic copula approach. Yet in some cases, the movement
trend of catastrophic mortality rates across countries might not be modeled properly as
a common factor. In this scenario, the mortality shock occurs only if a pandemic event
causes significant worldwide deaths. Consider Figure 1, which depicts death trends in
France, England and Wales, Italy, Spain, Switzerland, Canada, and the United States,
Taiwan from 1816 to 2021. In 2002, SARS killed 775 people in Europe, Asia, and
America. The outbreak of the Ebola virus in early 2014 had the most severe effects in
Africa; deaths in France, England and Wales, Italy, Switzerland, and the United States
revealed no significant jump trend. Conversely, we find clear jump phenomena in France,
England and Wales, Italy, Switzerland, and the United States during the 1918 Spanish
flu, which killed at least 20 million people. The most recent example, involving COVID-

19 and its outbreak in early 2020, has had severe effects around the world. The World
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Health Organization declared COVID-19 a global pandemic on March 11, 2020; as of

September 30,2021, more than 739 million people in 202 countries have been affected,

with more than 5 million deaths worldwide. As Figure 2 shows, COVID-19 causes

severe jump of deaths around the world.

As both the 1918 Spanish flu and COVID-19 demonstrate, pandemic mortality risk

leads to numerous deaths, and the fatal infectious disease can spread across countries,

especially as globalization and improved transportation capabilities encourage its spread.

Such patterns indicate that mortality rates across countries should experience significant

jump when a mortality shock leads to substantially higher deaths. Accordingly, we refer

to this effect as pandemic mortality shock. Although pandemic mortality risk clearly

exists in reality, and humanity simply cannot afford to ignore it or its impacts for pricing

mortality securities, the challenge of modeling this risk has not been addressed thus far.
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Figure 2: Weektly Death Trends in Different Countries, 20002021

In response, we seek to perform pandemic mortality modeling and determine the
effects of pandemic mortality risk on pricing a mortality-linked security. In so doing, we
establish three main contributions. First, we present an initial, multi-country pandemic
mortality model that captures jump phenomena during a pandemic event. We consider
a specific country mortality shock and a pandemic mortality shock. The pandemic
mortality shock occurs only if a pandemic event causes significant worldwide deaths
and the new death numbers in the country are greater or equal to the average new death
in the world. On the contrary, if the new death numbers in the country are not greater or
equal to the average new death in the world, the pandemic jump will not happen in that
country. Second, using the first Swiss Re mortality bond as an example, we obtain a
closed-form solution with a Wang (2000) transform, in line with Cox et al. (2006) and
Denuit et al. (2007). Thus, we can establish the effect of pandemic mortality risk on a
mortality-linked bond. Third, with an empirical study, we compare the impacts of
pandemic mortality risk on a mortality-linked security pricing in the full period, pre—
COVID-19 period, and during COVID-19 period. The findings provide novel insights

into mortality-linked security pricing in a post-pandemic world.
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The remainder of this paper is organized as follows: In Section 2, we propose a
pandemic mortality model to capture the effect of the pandemic mortality rate across
countries. Section 3 presents an analytical solution to the mortality-linked security,
Swiss Re bond through the Wang (2000) transform, and Denuit et al. (2007) approach.
After adopting a calibration approach to estimate model variables, we offer empirical

and sensitivity analyses in Section 4. Section 5 contains the conclusions.

2. Modeling Pandemic Mortality

To capture the pandemic mortality risk, we propose a mortality model that considers
a specific country mortality shock and a pandemic mortality shock governing the
mortality dynamics first. We define the notations for modeling these two types of shocks

first.

(1) g;,: the mortality rate at timefor the i" country;
(2) N,,:the new deaths of the i" country from a pandemic event at time¢;

(3) N,: the average new deaths of the world from a pandemic event at time¢;

4) If : the jump frequency of thei” country at time: caused by N,, > N,, which
captures the pandemic jump; a pandemic mortality jump occurs only if a pandemic event
causes significant worldwide deaths.

(5) T',,: the jump frequency resulting from the mortality shock in thei” country at time

t, which captures a specific country jump.
Throughout this article, we use (Q, F, P) to denote a filtered probability space

that accommodates all sources of randomness. We introduce the pricing measure Q
first. Let E°[-] indicate the conditional expectation under Q, given the information

available before time 0. By definition, the original or actual probabilities of an event
7



represent the measures of their likely occurrence in the real world. Shreve (2004) uses
a coin toss as an example of the original probability measure P. Risk-neutral probability
differs from the actual probability, in that it removes any trend component from the
security, apart from the one given to it by the risk-free rate of growth. As Shreve (2004)
explains, in the risk-neutral measure, every asset has a mean return to the interest rate,
and the realized risk-neutral return for assets is characterized solely by their volatility

vector processes.! Thus, the process is a martingale under ), in which the value of the

i" asset is denominated in shares of the money account. Shreve (2004) also denotes the

measure Q as risk neutral for the money market account numeraire. Extending the
same concept, the multi-country mortality dynamics (g,,) at timefor thei” country

considering m countries can be modeled as

d )
Nt — e+ 6, dW, +(A, ~1)dT,, +z,~NdI
q, ..
d‘b,t _ 3
= 11, dt + G, dW,, +(A, ~1)dT', , +(r, ~)dI’ , and
q9) .,
dq,.. _ _ o i (1)
—u, dt+0,dW, +(A, -1)dT, , +(z, ~1)dl;
qm,t

where 4 and O; are constants, and W, ,is a one-dimensional standard Brownian motion

under the original probability measure Pat time ¢. The correlation coefficient between

w.

., and W, is denoted as corr(dW,,,dW,)=p,, for v#i , where

I See Shreve (2004, p. 377). Alternatively, the forward-looking risk-neutral measure PT is a martingale,
using a zero-coupon bond maturing at time T as a numeraire. We can deal with derivative pricing in the
PT forward-looking risk-neutral measure if interest rates are stochastic. For the current study, we focus
on the impacts of pandemic mortality risk on the fair spread of a fixed-coupon bond, such that we do not
consider stochastic interest rates. Accordingly, we employ the risk-neutral measure Qto price the fixed-

coupon mortality bond.



iorv=1, 2, 3,..., m. The sequence of { If }mutually independently follow Poisson

distributions with intensities of A that are nonnegative constants, and { 1““} also

independently takes a Poisson distribution with intensity of A. , which we assume to

be a nonnegative constant. Furthermore,{ [f } is mutually independent of { l"l.,t} n

i=1, 2, 3,...., m.Both If and I';, areindependent Poisson-jump processes, driven,

respectively, by the pandemic mortality risk and the specific country risk at time . We
calculate the pandemic new deaths of thei” country and the average new deaths of the

world in one week in the empirical analysis.

Following traditional predictions about jumps by Merton (1976), we present 77 —1

th

as the random variable percentage in the mortality rate of the i country that results

from pandemic jumps of deaths in the world. The natural logarithm of 7;, or the jump

amplitude driven by deaths in other countries, should follow a normal distribution with

a mean of u, and variance of o , which also can be denoted Inz, ~ N(u, , 62 ),

”I

>0, i=1, 2, 3,..., m. In contrast, A, —1refers to the percentage of the mortality

th h

rate of the i" country that results from specific jumps in deaths of the i” country.

The natural logarithm of specific jump size is distributed as a normal random variable,

lnAi~N(uAi,O'/2\l_) , A,>0 ) i=1,2,3,...,m . Again using Merton’s (1976)
traditional assumptions, we anticipate that W, A, 7, If ,and I',, are pairwise
independent in i=1,2,3,..,m at time t . Finally, let

N EE(AZ.—I)=exp(uA,i+%O'ivi)—1 , and v, EE[(ﬁi—l)]:exp(uﬂi+%O'it_)—l ,

i=1,2, 3., m.



From Equation (1), we know that Inz, signifies the impact magnitude of the
pandemic jumps of the i country driven by deaths from a pandemic event. When

dl ; is 0, there is no pandemic effect on mortality rates for i =1, 2, 3,...., m in Equation

(D.

3. Valuation of a Mortality-Linked Bond in the Presence of Pandemic
Mortality Risk
3.1 Structure of a Mortality-Linked Bond
We analyze the effect of pandemic mortality risk on pricing a mortality-linked
bond. Mortality bonds transfer mortality risk to investors in the capital market. We use
the first Swiss Re mortality bond as an example, which is issued in late December 2003
and matured on January 1, 2007 (Swiss Re, 2003). It is a three-year bond. This bond
pays a fixed annual coupon (C) and the principal ( F) is exposed to mortality risk, linked
to the mortality indices. The Swiss Re is based on the average annual population
mortality rates in the United States, England and Wales, France, Italy, and Switzerland.

If this rate exceeded 130% of the actual 2002 level, investors received a reduced
principal payment at maturity. We let B, denote the principal payment at maturity
time 7', expressed as

B, =Max(1-Loss, 0), (2)

Max(Y,,, ~13Y_, 0)~ Max(¥,, ~1.5Y_, 0)

max

with Loss = , and
027
1
Y, =Max(Y, .Y, ,Y,) and Y, = (¢"q* ... qjs )@t

According to the design of Swiss Re mortality bond (Swiss Re, 2003), Y., Y, Y

4
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Y, ,and Yf} stand for the geometric average population mortality index of the focal

countries in 2002, 2003, 2004, 2005, and 2006, respectively. Furthermore,q,,, ¢,,, ...,

and g5, represent the mortality rates for five counties of the United States, England

and Wales, France, Italy, and Switzerland, respectively, and @,,q,,...,q, anda5

indicate the weights of their population mortality indices, also respectively.
The present value of the expected cash flow of the fixed-coupon mortality bonds

for investors is

By =Fxe ™ EC[ B[+ C[ e ) 4770 470 |
T

Max(Y —K —Max(Y —-K
:FXe—V(’s_fo)EQ Max 1_ a'x( max 1’0) a‘x( max 2’0)’0 (3)
KZ_KI

+C I:e—r(t, ) 4 e—r(tz—zo) + e—r(t3—t0) :I ,
where E°(.) denotes the expectation value under the risk-neutral probability measure

Q attime [, ris the constant risk-free rate, and K, =1.3Y_ and K, =1.5Y_, with
K, >K,. We provide a general valuation formula for a mortality bond with K, and

K, , which can be structured to reflect different payoffs for the mortality bond. However,
investors must pay the face value if the mortality bonds are issued at par. In turn,
B, =F, and we can obtain the fair spread (C" ), which also can be denoted as

_ Max(?, K.,0)—Max(Y

F_FXe—V(f3—fo)EQ Max 1 max 1 max_KZ’O)’O
Kz _Kl

e—r(tl—to) +e—r(z‘2—to) +e—r(t3—to)

*

C' =

-(4)

3.2 Valuation Formula for a Mortality-Linked Bond
Pricing derivative securities in the complete market involves replicating portfolios.

If there is a traded bond and stock index, options on the stock index can be replicated

11



by holding bonds and the index, which are priced. The mortality bond is a mortality
derivative, but there is no efficiently traded mortality index with which to create a
replicating hedge. To deal with pricing in such an incomplete market, the Wang (2000)

transform offers a popular option that relies on the following: For a risk with a

cumulative density function (CDF) F(x)under the original probability measure P, the

risk-adjusted CDF F (x) under the risk-neutral probability measure Qfor pricing risk is
given by

F'(x)=0@" (F(x))+6), (5)
where € is a constant risk premium, and ®(.) is a cumulative standard normal
probability.

Furthermore, Denuit et al. (2007) extend the Wang (2000) transform and show that
the expected value of a random variable X, under the risk-neutral probability measure
Qcan be given by

E°[X,]= j1[1—c1>(c1>-‘ (F(p))+6)]dp, (6)
t 0 9
in which 0< p <1, and@is a risk premium.

We apply Equations (5) and (6) to solve Equation (4) for pricing a fixed-coupon

th

mortality bond (i.e., Swiss Re bond). We denote the total risks at time rin the i

country as X, =T, +1 7, which follows a Poisson-jump process with intensity Ay

Suppose X, —lis the percentage of the mortality rate of the i” country resulting from total

risks, and X, follows normal distributions with a mean of#_and variance of o , and

v, = E[(x, —D)]=exp(u, + % o, )—1.In addition,
d .
(x,~1)dX,, =(A, —1)dT", , +(z, ~1)dI’ . (7)

12



Thus, we obtain
E[(x,- l)dXi,,]=E[(Ai —1)dT,, +(z, - l)dlf} , and (8)
Var[ (x, ~dX,, |=Var [(A,. ~1)dT,, +(r, - l)dlf} .9)
Using Equations (8) and (9), we then obtain:

1 5

1 5
Uy +=07, Uy +=01,
(€2 A, (@ A,

E[xi—l]: D
A+ A
u, 1
(e” —1)/7. +(e —l)ﬂr
=>u_=In +1 ——0' , (10)
K ZT‘;‘ +ll’?
1 2 1, 2
, B (e” —1)/1 +(e" —1)4, (e"? ”‘—1)/11,+(e‘ g ~DA
o, =In + +1| - +1
A, +)‘1? Ar, +/11, Ar +/11,
e 3% ~DA, +(™ Iy
—2In C41 |, (1)
ﬂr’_+/11;

with

2
1 5
2uy +207. Qu, +03. Up,+- 0},
B=|e™ T —e™ N ple T2 1] | A
1

2
I 5
2 +—0.
eZu,,I_+20',,I_ eZu +0',,1 [ Uz, 57 IJ ﬂ[;.

Under the original probability measure P, by Ito’s lemma, Equation (1) can be

. (= 00) (Tt +o 1y T . . .
rewritten as ¢, =¢,, e Hxl.,, ,i=1,2,3,..,m , in which X,
=1

represents the jump size, driven by both specific risks and pandemic risks for each

country, and X, ;is the jump number of both risks of each country at time 7. Let F =0

and]t’; =0, such thatX;, =0, because X,, =T, +It’;.

ity

13



(ﬂﬁlo'[z)(T*fo)‘*'UiW’,rfzo i .
The formg, , =¢,, e * I I x;, follows the jump model presented by
=1

Merton (1976) and Kou (2002). The I stands for the United States, England and Wales,

France, Italy, or Switzerland, respectively. Also,

1 G
In 4ir = In qi,t0+(ﬂi _Eo-iz)(T_tO)-'_o-iVK,T—to + Zln Xig - (12)
I=1

Next, let X, represent the sum of the pandemic mortality risk and the specific country
jump risks for the United States, England and Wales, France, Italy, and Switzerland,

such that X, =X, ,+X, ,+...+X,,, which follows a Poisson distribution with

5
intensity /1Xt and /lx, =Z(/1[; + ﬂ,-[ ) . For simplicity, we assume the sequences of

i=1
{x.] and{W,’,} are mutually independent. To derive the closed-form solution of the fair

spread of the mortality bond, we offer Proposition 1.

Proposition 1. Let Z, be a random variable describing the jump size driven by total

pandemic jumps and specific country jumps for the Unites States, England and Wales,

France, Italy, and Switzerland, where InZfollows a normal distribution with a mean of
U, and variance of O'Z2 . Given the respective logarithm of the mortality indices for the
United States, England and Wales, France, Italy, and Switzerland, as in Equation (13),
the logarithm of the geometric average population mortality rates of the five countries
takes the following form:

Xr
InY, =InY, +u,(T~t,)+0,W° +a ) InZ,(13)

=1

where W ¢ is a one-dimensional standard Brownian motion defined in a filtered
T

0

14



probability space (, F, Q) under the risk-neutral probability, Q ;

- 1
a, (lul - E 0-12 -0,0,(+ Poit P51t Puyt Ps )}

1
U, =a| +a, (ﬂz_50-22_O'zgw(l'i'pl,z+p3,2+p4,2+p5,2)j+--- ;

1
+a; [:us - E 0-52 -o,0,(1+ PisTPrstPistPys )]

I ... ps
o,=a [alo'1 a,o, a,0, a,0, a50'5] : IR [6110'1 a,o, a,0, a,0, a50'5] ;
psy w1

Xy X7 Xy r Xs r

and ZIn Z,=aq z Inx,, +a, Z Inx,, +..+as Z Inx;, .
I=1 I=1 I=1 I=1

Proof. See Appendix A.

From Proposition 1, we know that if X, is any constant ( X, =k, ),

In Zt/ X, =k; has a normal distribution with mean #_ and VariamceO'Z2 inj=1, 2, 3.

J

When X, =X, +X,, +..+ X

s.»and X, =s,, such thats;is any constanti =1, 2,.....,5,

5 5
2.2
i=1

we obtain u_ = IZIT and o’ = e with X, =k . For Equation (4), we
Max(Y,, —K,, 0)—Max(Y, —K,, 0)
suppose Sy = .
Kz _Kl
Conditional onY, = Y;, , we obtain
(Y’.f _K‘)I{Y >Ki} B (Y’r -k, )l{y >K}
S, = i v forj=1, 2, 3.(14)
Kz - Kl

15



(¥, - K1

If Ymax = Yt 5 then ST = {y’/'> l}
J K2 _Kl

in j=1, 2, 3. Therefore,

Equation (4) can be rewritten as

- F=Fxe ™ B2 (1-8,)ls . |

e—r(t]—to) +e—r(t2—t0) +e—r(t3—t0)

F—F><e—"<’3‘f°>[EQ(1{ST<1})—EQ(S1 )} (>

THS,<1}

9

e—r(tl—to) +€_r(t2_t0) +e—r(t3—to)

where

EQ (1{ST<1})

= B[y [V =Y, |# RO, =X+ E2[1s _ |Y,, =Y, |+P°(,, =Y,) (16)
+E° |:1ST<1 Y :Yt@j|*R’Q(Ymax =Y, )

From Equation (15), to obtain the closed-form solution with Equations (5) and (6),

we must solve the probability thatY =Y under the risk-neutral probability measure.

Therefore, Proposition 2 is necessary.
Proposition 2. Given Y, = Max(Y, Y, .Y) and X, =k, , the probability that

max Jj

Y, =Y, forj=1,2,3 under the risk-neutral measure Qis:

A e e A ¢ s —u, (t,—1,)—a(ky—k, )u,

3 D (17)
k;% k,! k;! \/aj(t3—tz)+a2(k3—k2)aj

N ii/ﬁ?he My /1)123 o —A, (t,—t)—a(k,—k)u,
far Y ky! \/O';(l‘3 tl)+a2(k3—kl)0'22




Jol (t,—t)+a* (k,—k)o

zZ

o = A e Al e —u, (t,—t,)—a(k,—k,)u
+ 7} 5 d y \"3 2 3 2 )%z

\/O-; (ts —t2)+a2 (k3_k2)022

= = A e Qe —u, (t,—t)—a(t;—t)u
X!;Z K X ® p 2
3= 1° 3°

Proof. See Appendix B.

Let Y =Y for;j=1, 2, 3. Then we can obtain Equation (20):

max t j

17



= P2( T Y =Y,)
2 1
P(Y,, =¥, )=P2(¥,.. ¥, >K,) (20)
) P2(Y,, =7,)

forj=1, 2, 3.

Suppose that Y, =Y, Y , orY, . Then Equations (21)-(23) can be obtained.

P(Y,, =Y, ¥, >K,)

=P, > X%, > K, )[1=R (¥, <X, ) [+ 22 (¥, >7,. ¥, > K,) P2 (¥, <%, ), 21)
P2(Y,,. =Y. ¥, >K,)

=P0(Y, >7,., > K, )[1-P(¥, <¥,) |+ P2(¥, >7,. ¥, > K,) B2 (Y, 27, ). (22)
and

P2(Y,,. =Y, Y, >K,)

=PO(Y, > XY > K, )[1=R (¥, <Y ) |+ B2V, > ¥, ¥, > K, )R (¥, 27,). 23)

Further, — P9(Y,,=7%,Y, >k, ) .  PB°(Y,.=Y,Y >K,) and
RQ (Ym =Y ,Y > K2) can be respectively derived in Equations (24)-(26) as shown

in Appendix C in detail.
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B’Q(Ymax: t,? Ytz >K2 ):
i i 1)12267 e l)’?t}e_ s —u, (t,—t,)—a(ky =k, )u.
hokhmo k! ks ! \/O'j (t,-t,)+a* (k,—k,) 0!
i/l)]?%e Y InK, - (t—1,)-InY, —a ku
oo k! \/0'}2 (t,-1,)+a’k,0’
o oo /’ikze X1y /11% eiﬂth
3y x,zk ' X,;k —®(~d,, d,, p,)
k=0k=0 K3 3
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PVQ(Ymax :Yt3’ )7t3 >K2 )_
ii/ﬁée & ﬂ)l?n s H, (t )+a(k3 kz)u
S kK Joi(t,—t,)+a’ (k—k,)
i lﬁfze P InK,—u,(t,=t,)=InY, —aku,
o k! \/0')2) (t2 t )+a2k6
o oo /’ikz e_ﬂxfz lks eiﬁxtz
+Z z XQk : Xlsk | CI)(dz,—d3, pzy,s)
k=0 k=0 : :
X l—ii/ﬁ - ﬂkz - —# ( )_a(kz_k1)uz
ky=0 k=0 k! \/O' t, —t k) 22
7/1)“1 3 X3
iiﬂ'}@”e 2“;36 ® luy (t3_t1)+a(k3_k1)”z
ook k! k;! \/O'j (t,—t,)+d’ (k,—k)o?
i/u?”e ' InK,—u (4 ~t))~InY, —a ku,
ik \/of, (t,—t))+a’ko
o oo /’ikl e ﬂ]% eil"ts
o (T
k3 =0 k;=0 1

y i i ﬂ)]?rle Xy l;zrze Yy o _/uy (tz t]) a(k2 —k])uz (26)

hook=o k! k! \/O'j (tz—t1)+a2 (kz—kl )O'Z2

InK, - - lnY a ku
in which d, = \/“ (6 =) - SRy
o’ +a kG
_ K, —u,(t,~t,)-InY, —akyu, _ InK, -, (t;~t,)~InY, —a ku,
’ \/O'j(tz —1,)+a’k,0° Y \/Gi(g —1,)+a’k,0’ ’
5 5 y

. :;Siai O-zzzlsjajgx[ py _ O—j (tl_to)+a2klkzo_z2

: k : k " \/0' t,)+a’ko’ \/O'f, (t,-1,)+a’k,0’



az(tl—t )+a’kk,o?

P - ,and
B \/0' o) +a’ko? \/0' —t,)+a’ko?

o = 0. (t,— 1))+ a’kkyo!

> \/Gf,( t,)+a’k,o? \/0' —t,)+a’k,0?

_ | _
a (:ul - E 0-12 -0,0,(+ Port Pyt Psyt Ps) ))

1
H,=a +az(ﬂ2 E -0,0, (1+p12+p32+p42+,052)j , and

1
+a; [:us _50-52 -0,0,(1 tP st s+ P55 T p4,5)j

1 .. ps
o,=a (a0, a0, a0, a0, ac]l i . i g0 a0, a0, a,0, a0,].
psy 1
Substituting Equations (24)-(26) and Proposition 2 into Equation (20), we
determine E° [l{s,< 1}|Y =Y }for]_l 2, 3.After obtaining E° |:{S<l}| },
EQ |:1{ST< 1} |Ymax = Xz] , and EQ |:1{ST< 1} |Ymax = }2] , W€ can Complete EQ (I{ST<1})
through Proposition 2, because
EQ (I{ST<1} )
= EQ |:1{ST< 1} |Ymax = Ytl :|RQ (Ymax = Yt1 )
Q

vy Yo =X, [#P2 (Yo =X, )-
However, [ST 1{ §< 1}] still must be derived by means of Equation (6), as
proposed by Denuit et al. (2007). From Equation (6), we know
EQ[STl{S ) 1}} [, [1—(1)(@-1 (R (815, <p))+6’)}dp, 27)
in which P () represents the probability under an original probability measure; @is a
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risk premium; and 0 < p <1. Moreover,

+B‘(Ymax:Ytl’ Y, <(K,+p(K, K1)>a K <Y, SKz)
+Pr(Ymax: 0 X, <(K1+p(Kz_K1))a K <Y, SKz)
P (T =T, 1, <(K,+ p(K,-K)), K, <Y, <K,). 28)

. 2 —AXIZ *
[ipg e e ittt
ky=0 k=0 k! k,! , :

Joi (,-t)+ad* (k,—k)o:
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Pr(Ymax = t? Y;z <V):
i /I,kjrz e M an—,u* (¢, - )—lnY —a k,u,
ky=0 ky! \/O' +a2k O'

A e e
]
k,!

) N
o MV =4 (1 =1) -

2
Vo,

(t,—t,)+d’k,0

_IU; (t—t)—a(ks—k)
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= Ay e o InV -, (t,—1,)—InY, —a kyu,
\/O'i (t,—1,)+a’k,0?

~ l_iiﬂ)@q My lk; g —,Ll;(t3—tl)—a(k3—kl)uz
ook k! \/O' (k3—k1)0'22

e l_iiﬂ){ize = lﬁie s ,u;(t3 12)—a(k3—k2)u2
ok k! ks ! \/0"2 (t,—t,)+d’ (k,—k,) 0’
/1"‘ & /1k2 M —,u; (¢, —tl)—a(k2 —k)u,

; €2))

S

=0 k=0 kl! \/O' (k —k, )O‘Z

for V=K, or K, +p(K,-K,), and,u —aZa(,u——O'z)

i=l
Appendix D is demonstrated the proofs of Equations (29)-(31) in detail.

Further, we also can derive P. (ST g oy < p)and E° [ST L - 1}} . Finally, we thus

determine the fair spread rate of the mortality-linked bond.

4. Empirical and Numerical Results

In this section, we use the weekly death rate data from the short-term mortality

fluctuations (STMF) data series, established by the Human Mortality Database (HMD)
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team to estimate the parameters for the proposed pandemic mortality model shown in

Equation (1). We estimate the parametersof (u,, ., u, ,0, , u

l 2 Op s Ap s A, for

the five countries of Unites States, England and Wales, France, Italy, and Switzerland.
To ensure that we focus on the COVID-19 event and limit the common time for all five
countries, we specify a time window from January 1, 2015, to May 24, 2021. Based on
the weekly data, it produces 333 observations across five countries for this period.
Furthermore, we decompose this full period into two subperiods: pre-COVID-19 and
during COVID-19. With the parameter estimates, we can obtain the fair spread of the
mortality-linked bonds when considering the pandemic mortality risk, in accordance

with the analytical solution derived in Section 3. We also provide sensitivity analyses.

4.1 Descriptive Statistics and Data Analysis

Table 1 contains the descriptive statistics for mortality rates for the five countries
across the three periods: the full period, the pre-COVID-19 period, and during COVID-
19. In Table 1, we find that the distributions of mortality rates are significantly non-
normal at a 5% significance level by means of Jarque-Bera statistic for the full period,
the pre—COVID-19 period, and the during COVID-19 period. The volatilities of
mortality rates during the COVID-19 period are obviously higher than those in the pre—
COVID-19 period in all five countries. The mean of the mortality rates also are far
smaller in the pre—COVID-19 period than those during COVID-19 in the Unites States,
England and Wales, France, Italy, and Switzerland. Table 1 confirms that COVID-19

caused a significant increase of mortality rates around the world. Table 2 demonstrates
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the correlation coefficient matrix of mortality rates for the Unites States, England and

Wales, France, Italy, and Switzerland.

Table 1: Descriptive Statistics of Mortality Rates over Various Periods

o England and .
Statistics USA France Italy Switzerland
Wales
Panel A: Full Period
Mean 0.008970 | 0.009313 0.009321 0.011122 0.008067
SD 0.001069 | 0.001778 0.001175 0.001778 0.001216
J-B 61.150340 | 120.195110 | 90.134623 | 155.482114 | 149.648116
P-Value 0 0 0 0 0
Obs. 333 333 333 333 333
Panel B: Pre-COVID-19
Mean 0.008587 | 0.009032 0.009090 0.010720 0.007899
SD 0.000538 | 0.001215 0.000956 0.001295 0.000860
J-B 55.020450 | 111.750600 | 81.069890 | 152.276800 | 147.406300
P-Value 0 0 0 0 0
Obs. 259 259 259 259 259
Panel C: During COVID-19
Mean 0.010310 | 0.010300 0.010130 0.012530 0.008660
SD 0.001350 | 0.002810 0.001480 0.002420 0.001910
J-B 19.962080 | 37.468850 | 7.1187050 | 14.199500 | 22.773320
P-Value 0.00013 0 0.028457 0.00083 0.00001
Obs. 74 74 74 74 74

Notes: SD = standard deviation, J-B = Jarque-Bera statistic.

Table 2: Correlation Coefficient Matrix for the Unites States, England and Wales,
France, Italy, and Switzerland.

England
USA and France Italy Switzerland
Wales
USA 1 0.7034 0.6842 0.7123 0.7109
England and 0.7034 1 0.5542 0.5973 0.5434
Wales
France 0.6842 0.5542 1 0.8886 0.7937
Italy 0.7123 0.5973 0.8886 1 0.8047
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Switzerland 0.7109 0.5434 0.7937 0.8047 1

4.2 Parameter Estimation and Goodness of Fit of the Pandemic Mortality Model
In this section, we apply a calibration approach to estimate the parameters

(Hys Oy tty Oy sy O,y Ap s A0) of the pandemic mortality model shown in

Equation (1) for the five countries’. The parameters are obtained by minimizing the
nonlinear sum of squared errors (SSE) of the actual and the estimated mortality rate. To

express the actual and the estimated mortality rate, we rewrite Equation (1) as

T I}

—0.5%c> : . ! .

(4;—-0.5%0; )AI+O',R£,«/A—Z I A[-J- I1 for lzl, 2, 3’“"’ m. (32)
Jj=1

— ”i,j’

49,.: =40 €

j=1

where £1s a random variable distributed in normality with mean of 0 and volatility of
r . . . . .

1; At=—, in which » denotes time steps; R is a correlated random variable
n

through a Cholesky decomposition. Let d(Ing; ,) be the model log rates from Equation

(32) andd(Ing, ,) be their estimated log rates. The differenced(Ing, ,) —d(Ing, ,)is a

function of the values taken by G= ( U, O, U, ,O,, U, ,O

”/

A s A - Thus, we

;2

obtain the parameter vector @ by solving SSE, which is
n 2
SSE = min Yol (33).
j=1

We use the correlation coefficient matrix in Table 2 and the initial values of

2 Calibration refers to the task of estimating the best fitting parameters in a parametric model in
comparison with a chosen observable quantity. The comparative information typically consists of
historical data for liquid instruments.
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(Hys Oty Oy sty O,y Ap s A0) in Table 3 to find the parameter vector © in

Equation (33). We use the mean and volatility of the mortality rates as the initial values

for each country in various periods. A, symbolizes the initial value of pandemic jump

intensity and we calculate it using the mean of pandemic jump frequency caused by

N, , 2 N, for each country in various periods. A. denotes the initial values of the

it =
country jump intensity and we use 5 as the initial value of pandemic jump intensity.

Finally, g; , is the initial value of mortality rate and we use the mean of mortality rate

for each country in various periods.

Table 3: Initial Values of the Calibrated Parameters for Various Periods

Parameters USA England and France Italy Switzerland
Wales
Panel A: Full Period
i -0.000182 -0.000721 -0.000242 -0.000421 -0.000343
o 0.009262 0.0503023 0.018429 0.021980 0.0229931
u, 0.001 0.001 0.001 0.001 0.001
o, 0.01 0.01 0.01 0.01 0.01
u, 0.001 0.001 0.001 0.001 0.001
o 0.01 0.01 0.01 0.01 0.01
A;
}%L 5 5 5 5 5
q, 0.008970 0.009313 0.009321 0.011122 0.008067
/1],7 12 8 10 8 3
Panel B: Pre-COVID-19
U 0.008587 0.009032 0.009090 0.010720 0.007899
o 0.000538 0.001216 0.000956 0.001295 0.000860
u, 0.001 0.001 0.001 0.001 0.001
o, 0.01 0.01 0.01 0.01 0.01
u, 0.001 0.001 0.001 0.001 0.001
o 0.01 0.01 0.01 0.01 0.01
A;
}%,. 5 5 5 5 5
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G, 0.008587 0.009032 0.009090 0.010720 0.007899
/1](,; 0.001 0.001 0.001 0.001 0.001
Panel C: During COVID-19

i 0.010314 0.010298 0.010134 0.012533 0.008656
o 0.001353 0.002813 0.001481 0.002422 0.001914
u, 0.001 0.001 0.001 0.001 0.001
o-”l‘ 0.01 0.01 0.01 0.01 0.01
uAlv 0.001 0.001 0.001 0.001 0.001
O-A! 0.01 0.01 0.01 0.01 0.01
ﬂrll 5 5 5 5 5
G, 0.010314 0.010298 0.010134 0.012533 0.008656
/1](,; 12 8 10 8 3

Notes: The initial values of £ and 0; are the means and volatilities of the mortality rates for the United States, England

and Wales, France, Italy, and Switzerland in various periods. Then A, symbolizes the initial values of pandemic

Jjump intensities, which is the means of pandemic jump frequencies caused by N, , > N, for these countries in various
periods. Finally, g, is the initial values of mortality rates, which are the means of mortality indices for all five

countries in various periods.

Then in Figures 3 to 7, we depict the estimated values of the logarithmic mortality
rates in the pandemic mortality model; the mean squared errors are 0.0001046,
0.0000108, 0.0002581, 0.0003141, and 0.0003165 for the United States, England and
Wales, France, Italy, and Switzerland in the full period, respectively. This evidence
affirms that our pandemic mortality model captures the jump in the actual change rates
of mortality rates in different countries. The estimated parameters for the proposed

pandemic mortality model are presented in Table 4. We can observe that A is higher

during COVID-19 period than in the pre-COVID-19 period; that is, COVID-19

increases pandemic jump frequency, as we would expect.
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Table 4: Parameter Estimates in Dynamic Processes of Mortality Rates through
Calibration with the Pandemic Mortality Model

Parameters USA England and France Italy Switzerland
Wales
Panel A: Full Period
U 0.0081 0.0115 0.0086 0.0118 0.0095
o 0.0008 0.0033 0.0017 0.0018 0.0017
U, -0.0009 0.0051 0.0011 0.0011 -0.0004
o, 0.0115 0.0127 0.0108 0.0101 0.0097
UAKY 0.0014 -0.0042 0.0004 0.0014 0.0014
O-A: 0.0131 0.0108 0.0111 0.0115 0.0118
A 5.0004 4.9980 5.0001 5.0005 5.0003
A 12.0578 8.1542 10.3576 8.6051 3.0096
Panel B: Pre-COVID-19

U 0.0098 0.0096 0.0091 0.0112 0.0099
o 0.0011 0.0018 0.0013 0.0018 0.0012
u, 0.0001 0.0006 0.0008 0.0009 0.002

O—; 0.0114 0.0108 0.0099 0.0101 0.0123
”A{ 0.0036 0.0023 0.0016 0.0016 0.0004
O-A:. 0.0114 0.0121 0.0102 0.0108 0.0109
A 4.9999 5.0002 4.9999 5.0003 5.0005
A; 0.0095 0.0012 0.0011 0.0013 0.0009

Panel C: During COVID-19

i 0.0114 0.0123 0.0104 0.0215 0.0028
o, 0.0189 0.0026 0.0021 0.0029 0.0075
u, 0.0318 0.0036 0.0031 0.0041 0.0038
0',; 0.0138 0.0122 0.0156 0.0122 0.0212
”A’v 0.0037 0.0008 0.0018 -0.0051 0.0032
O-AI» 0.0192 0.0149 0.0138 0.0196 0.0196
/11.: 5.0084 4.9999 5.0008 5.0013 5.0002
A; 13.0154 9.1208 11.6213 9.1511 3.5891

Notes: The parameter estimates come from Equation (1);i= United States, England and Wales, France, Italy, or
Switzerland.
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Alternatively, Table 5 presents the results of an estimation of the model parameters
without pandemic mortality risk. Using the results from Tables 4 and 5; the risk

premiums of 0.83, 0.8657, 1.5, and 1.21 offered by, respectively, Cox et al. (2006), Lin

and Cox (2008), Chen and Cox (2009), and Lin et al. (2013); and values of @, =0.7,

a,=0.15, a,=0.075, a,=0.05,and a,=0.025, we can calculate the fair spreads of

Swiss Re bonds with and without pandemic mortality risk for the five countries. As the
results shown in Table 6, the phenomena are consistent. The fair spreads with pandemic
mortality risk are far greater than those without pandemic mortality risk across periods;
the fair spreads when we include pandemic mortality risk are the highest in all countries
during the COVID-19 period. The fair spreads of Swiss Re bonds in the pandemic
mortality model are far greater than the 0.45% indicated by Cox et al. (2006). That is,
ignoring the effects of pandemic mortality risk leads to significant underestimates of the
par spreads for mortality-linked bonds, whereas accounting for this phenomenon reveals
the true impacts of pandemic mortality risk in the real world, particularly during the

pandemic period.
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Table 5: Estimation of Model Parameters without Pandemic Mortality Risk

Parameters USA England and France Italy Switzerland
Wales
Panel A: Full Period
U, 0.0090 0.0091 0.0079 0.0010 0.0080
o 0.0014 0.0017 0.0011 0.0010 0.0013
N 0.0007 0.0009 0.0023 0.0002 0.0007
o, 0.0111 0.0104 0.0098 0.0090 0.0101
ﬂrll 5.0001 5.0001 4.9998 5.0005 5.0001
Panel B: Pre-COVID-19
yza 0.0092 0.0081 0.01 0.0121 0.0099
(o 0.0029 0.0004 0.0028 0.0019 0.0011
N 0.0017 0.0009 0.0013 0.0012 -0.0009
o, 0.0114 0.0105 0.01 0.0109 0.0097
Ar, 5.0076 5.0002 5.0003 5.0004 5.0002
Panel C: During COVID-19
yza 0.0096 0.0087 0.0095 0.011 0.0094
(o 0.0006 0.0026 0.0021 0.0011 0.0055
N -0.004 0.0019 0.001 0.0013 0.0036
o, 0.0113 0.0132 0.0098 0.0102 0.0158
Ar, 4.9999 4.9986 5.0001 4.9998 5.0016

Table 6: Fair Spreads of Swiss Re Bonds with Various Risk Premiums

Model | 6=083 | #=0.8657 | 6=121 | 6=15
Panel A: Full Period
Pandemic Mortality 0.2514 0.2692 0.2701 0.2702
Model
No Pandemic 0.0305 0.0322 0.0411 0.0437
Mortality Model
Panel B: Pre-COVID-19
Pandemic Mortality 0.0918 0.0989 0.0992 0.0988
Model
No Pandemic 0.0305 0.0308 0.0397 0.0387
Mortality Model
Panel C: During COVID-19
Pandemic Mortality 0.2701 0.2711 0.2721 0.2722
Model
No Pandemic 0.0341 0.0340 0.0513 0.0500

Mortality Model

35



4.3 Numerical and Sensitivity Analyses

Using the information from Table 4 and values ofa, =0.7,a,=0.15,4,=0.075,

a,=0.05,a,=0.025,0, =60=0.83, and face value=1, we also investigate the price of

the Swiss Re bonds under the proposed pandemic mortality model numerically. Table 7
contains several consistent results. First, when the model parameters

(Hys Oty Oy Uy O,y Ap s A0) increase by 10%, the fair spreads are higher than

T

when these model parameters fall by 10% in each country, consistently for the various
periods. Second, the relationship between the fair spreads of the bond and model

parameters of (u., o, , NN

l O, s Ar s A is positive. The fair spreads thus

”/ ”1 ’

appear to increase to compensate for pandemic mortality risk as mortality rates increase.

Third, when we compare the sensitivities of the model parameters in the pre—
COVID-19 and during COVID-19 periods, we find that they are mostly significantly
higher during COVID-19. This evidence confirms the reality: COVID-19 has given rise
to massive increases in deaths around the world, and the spreads of mortality-linked
bonds increase to compensate for the related pandemic mortality risk. The sensitivity of
the volatility of the mortality rates is smallest when the model parameters decline by

10% in the pre—COVID-19 period, but the sensitivity of the volatility of pandemic jump
sizes is greatest during the COVID-19 period when o, increases by 10%. Therefore,
pandemic mortality risk is a crucial factor for mortality-linked bond pricing during

COVID-19. Fourth, the sensitivities generally are greater when each model parameter

rises by 10% compared with when the same model parameters decrease by 10% during

the COVID-19 period, especially in relation tou, , o, , and A In summary, we show

that it is critical to consider pandemic mortality risk when a pandemic event occurs.
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5. Conclusion

Transferring mortality losses using mortality-linked securities is critical to the
insurance industry. Many life insurers operate their businesses internationally. Using
patterns of mortality experience, we find that a pandemic event can cause significant
pandemic jump of deaths across countries respectively. Although prior studies have
considered mortality rates with jumps, they explain the co-movement of mortality rates
using common jumps across countries. Instead, mortality trends offer empirical
evidence that pandemic mortality jump may occur in a country when a pandemic event
results in globally massive deaths and the new death numbers in the country are greater
or equal to the average new death in the world. Existing research rarely has modeled
this phenomenon of pandemic mortality rates considering the pandemic jump. To fill
that gap, the current article offers a fresh look at the effects of pandemic mortality risk
on the valuation of mortality securities. Employing a threshold jump, we develop a
pandemic mortality model. Using the Wang (2000) transform, Cox et al. (206) and
Denuit et al.’s (2007) approach, we derive a valuation formula for Swiss Re bonds, based
on our pandemic mortality model.

The empirical analysis reveals that the fair par spreads of the mortality fixed-
coupon bond in our model are far higher than those obtained using Cox et al.’s (2006)
method, which are significantly greater during the COVID-19 period than in the pre—
COVID-19 period. Accounting for pandemic mortality risk enables the fair spread of
mortality bonds to match the real world better, especially during COVID-19, which is
beneficial to efforts to price mortality-linked securities and manage pandemic mortality
risk for reinsurers in the post-pandemic world.

In our analyses in this article, we assume the population of newborns is static and
ignore dynamic population effects, such as due to immigration. However, dynamic

populations represent realistic issues, which are worth exploring in further research.
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Appendix A
From Cox et al. (2006), we obtain the following relationship between W, , and W2 :

0
W

W, +B,t, (A1)

5
where ﬂw,» =6’Wi +Zpl.,‘,l9wj for izv,iorv=1, 2,....,5. Following Cox et al. (2006),
Jj=1

5
we assume 6, and g, are equal, which means6, =6, =6, . Thus, B, =6, 1+ Z pi;)
j=1
fori#v, iorv=1, 2,...,5. Substituting Equation (A.1) into Equation (12) produces
1 Xir
In 4;r = In 4., + (:ui _E O-lz —0; ﬁw, )(T - to) + O-iVVi,QT—tO + z In Xig - (A.Z)
=1

1

From Equation (A.2) and Y, = (¢ ¢ .....q" )*"®""*  we know

XT
InY, =Y, +4,(T~,)+0 W +a Y InZ, , (A3)

I=1

1

where a=——
a,+a,+...+a;

- 1
a (/ul - E 0-12 -0,60,(1+ Port Pt Psy T Ps, )j

1
MU, =al +a, (,Uz—50'22—O'QBW(H',OLZ+p372+,04,2+,05,2)j+-.- ;

1
+as (ﬂs _5 0-52 — 05 gw (1 + pl,S + pz,s + p3,5 + p4,5 )j

1 ... pgs
o,=a (a0, 4,0, a,0, a,0, ao5] P . 1 |[q0, 4,0, a0, a,0, a;04];

Py 1
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XI.T XZ,T XS‘T

Xr
and Y InZ =a, Y Inx, +a,» Inx,, +..+a; Y Inx;,, InZ~N(u,,0?).
=1 =1 =1 =

Thus, Proposition 1 is confirmed.

Appendix B
Because
P2 (Y, =Y, )=F2(Y, >Y, >Y, )+B°(Y, >, >V, )
=P2(Y, >Y,.Y, >Y, )+ P2 (Y, >Y,.Y, >, ).

Due to the independent relation between X, and X, , P? (Yt1 >Y, ) also can be written
as:
P2(Y, >Y,)=P°(InY, >In¥, |X, =k, X, =k ) P?(X, =k ) P?(X, =k). (B.2)

By applying Proposition 1, we use Equation (B.2) to derive

Al e —u (t,—t))—a(k,—k
Xy Xy o ltzy( 3 l) az( 3 l)uz2 ) (B3)
k! Joi (t-t)+a* (k,— k)0

v, >Y,

2 3

With the same procedure, P?(Y, >, )and RQ( ) take on the following forms:

-2y,

o e /’lkl _)LXH ﬂkz 2 _ _ _ _
BQ()][ >K7)=ZZ the sze o luy(l2 t]) (Z(k2 kl)uz ,(B4)
e e S k,! Joi (t,—1,)+d* (k,— k) o?

and
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e = Ak /1k3 M —u, (t,—t )—a(k —k,)u,
PQ Yt >Yz _ X2 /uy 3 2 3 2
r ( 2 3) I{}Z_‘B](ZZ_ZO k2! \/O' t, —l‘ k k) o’

z

-(B.5)

Next, by inserting Equations (B.3)~(B.5) into Equation (B.1), we obtain P? (¥, =7, ),

max

as shown in Equation (B.6). Similarly, Pf(Y ' =Y[2) and RQ(YWX = ,)can be

max 3

obtained, as in Equations (B.7) and (B.8), respectively. Thus, we prove Proposition 2.

T /1)]? e_%z /1)1? ei% —H (t —t )'-a(k k )u
) &) y \"3 2 3 2 z
x[ E E Y ol D \/ - > (B.6)

N ii/ﬂ?‘]e% /1)’23@_1)(’3 —p, (t;—t,)—a(k,—k )u,
ook k! k! \/O'j(t3—ll)+a2(k3—kl)0'zz

_ﬂ'xtz 3 7/1Xt3
/1)]226 /ﬁ}ge q;{ i, (=) +a(ky—k,)u, H

\/O-i (t3_t2)'|'a2 (k3—k2)0'22

wwz%%wwﬂ u, (1 - wwkk)
P,.Q(YW—KZ){ZZ TN {J ;

=0k =0 O'y k —k )
Xiiaf“&f%@-%m )(wﬂ
ook k! \/O'; (t3 k k)
\ i i ﬂ;fz e—ﬂx,z ﬂvk(z e*ﬂm o ﬂy( ) (k —k )
ook k! \/O')Z I —t k -k )O'Z2
= = A e ¢ e w,(t,—t)+a(k,—k)u
Xzz lki 3kv ; : 23 ; 2 ’(B7)
k=0 k=0 1 3 \/O'y (t3—tl)+a (k3—kl)0'Z

and
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S k! k! Jor (6, —1,)+a* (ky—k,)
y izﬂkte K ﬂ)’;fze e u,(t,—t)+a(k,—k)
GiE kD kLol (n-n) v (k k)
B LA L t +a(k,—k
+ ZZ Xy X 'uy( ) d( )
kPR (o) () +a (k=)
o = e T A e u (t,—t)—alk,—k )u
% ZZ X, ' X, : 2y(2 l) 2( 2 1) 22 ,(B.S)
S5 kK k, Joi (t,-1)+d* (k,~k,) 0
Appendix C

Applying Proposition 1 and Appendix B, Equations (C.1) and (C.2) can be derived

as follows.

PO(Y, >Y,, ¥, >K,)=F(Y, >Y, )-B°(Y, <K,)+P2(Y, <K,, ¥, > K,)
R L P —u, (t,—t)—a(k,—k)u

=;”;) X[]k' Xk' (D\/; 3 1 . 3_1 =
3=0 k= 1 3 O-y (t3 tl)+a (k3 1 O-Z

', —4,(t,-1,)=InY, - Age ™ Ape™ ,
iyt } AZ(; ) Yo zz ' q)(—dl, d,, ply), (C.1)and
o k! \/a},,(g —t,)+a’k,0? ok k! k !

,1)(12
_i/’t)';jze ® InK, -, (1,— )—1nY— a kyu,

e
- ®(—d,,d,,p},). (C2)
k=0 k2 ‘ \/O- + alk O_ par o kl | k2 ‘ ( 1 2 1,2)

Therefore, P?(Y,, =Y,, Y, >K, ) canbe derived as illustrated in Equation (C.3).
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S5 k) k! Jor (t,—1,)+d* (k,~k,) 07

o = AR e_ﬂX’2 AL e_% —u (t,—t,)—alk,—k,)u
X[ZZ X, X, o ﬂy( 3 2) ( 3 2) 2 . (C.3)
Y

Similarly, P?(Y,, =Y,,Y, >K, ) and P,Q(Ymax =Y,Y >K, ) is shown in

max

Equations (C.4) and (C.5).
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R’Q(Ymax :)IIZ’ Ytz >K2 )_
iiﬂw’ze e ab e (_u (t-t,)—a(ky—k, )u,
0o k! ky! \/O'yz (t,-t,)+a* (k,—k,) 0!

-1 -
k Xy ks X3
= = A’e /1)(,36

+ZZ lzk ! k3! q)<_d2a d3, pzy,3)

—Ax, .
w o /l)’?re lﬂ,’;’}e CI)[ —,uy(t3—t1)—a(k3—kl)uz J

_gxq 3 _}‘th
Aie™ Aie q)[ 4, (1) —alk —ku. J (C.4) and
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SEATAT )

i lkz M —u, (¢ —t)—a(k L
| 1- , € v\l —h 2 TR )U,
ZZ ! [\/O' _k1,)o'zz

-
ii n & [0} llly(tS_tl)-i_a(k_’)_kl)uz
k=0 k=0 k] ! k3 ! \/

O-i (ta _t1)+a2 (ka _kl)o-zz

k3=0 k=0
o o /1)'?[1 ¢ /1),226—@,2 —, (t,—t,)—a(k,—k)u,

% ZZ ) k! @ 2 2 2 | (€5
h=0k=0 1 2 \/O'y (t,—t,)+a (kz—k1 )O'Z

InK, -, (t,—1,)-InY, —a ku, J InK,—u,(t,~t,)-InY, —akyu,

withd, = 2 2, 2 » 427 2 2, 2
\/Gy(tl —t,)+a’ko’ \/O'y (t,—t,)+a’k,0:

5 5
InK,—p (t,- )—lnY —a kyu, Z;Siai”x, lesfafzo'f
= ,uz — 1= . — Ii=
3 \/(5 +a2k(5 k k

O'y2 (t,—1,)+a’k k0’

pi
. \/a o )+a’ko! \/0' —t,)+a’k,0?
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o‘y2 (t,—1,)+a’k k0’

\/0 ,)+a’ko? \/0 —t1,)+a’k,0?

b

ol (t,—t,)+a’k,k,0?

y

Py =
. \/O'j )+a2k0'\/0' —t,)+a’k,0;

b

i 1
a, (ﬂl - 5 0-12 -0,6,(+ Prrt Pt Psyt Ps) )j

1,
H, =a| +a, ﬂz_zo-z_O-zew(l"'pl,z+p3,2+p4,2+p5,2) +...|,and
1,
+as| Us _50-5 —Os ew(l+p1,5 + 05t Pss +,04,5)
L ... ps |
o,=a |la0, a,0, a0, a0, a0l 1 . i |a0, a0, a0, a,0, a;0].
Ps 1
Appendix D
Because
R (Y,.=Y,, Y, <V)
:Pr Yf1<V’ f1>Y;2)P’ r h 8 3>YI2)

LY, Y )P(Y, >Y, )+P(Y, <V, Y, >Y )P(Y, >Y, )
=[B(v, <V)-B(v, <x)|B (v, >7 )+ B(Y, <V)-P(¥, <V, )|B(Y, > ).(D3)
P(Y o ):ii/uzze_lxz ﬂ)]‘;}e Xi3 o _luy(t3 tz)—a(k3— 2) - (D4)
A S v Yo S ky! o (t,-t,)+a’ (k,—k,)o? ,
P(Y oy ):iiﬂv)@qe_ Xy ﬂ,/]\izze—ﬂ%z(b _luy (t2 tl) a(k2 kl) (D 5)
A paveri e S k,! \/0'2(1‘2—tl)+az(kz—k1 O'z2 ’
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,AXII .
Pl <r)- 5 g Y () Y ek
a \/O-y2 (tl _to)"‘azk_,o'zz

forj=1, 2, 3,(D.7)

w1th,u —aza g7 ——0'2) and V=K, orK +p(K,—K,), we can obtain

i=l

P(Y,, =Y, % <V), P(V,. =7, <V),and B(Y, =Y, ¥ <V)asshown

in Equations (D.8)-(D.10).

\/O'j (t,—t,)+d’ko’

122%‘)‘" ﬁ 46 a)alh )
ook k! \/O' t—t k k)0'2

x,2 3 _/1)(,3 *
y l—iiﬂﬁe /1" ® —, (4, —t,)—a(ky,—k,)u,
k=0 k,=0 kz' k3' \/ 2 2

2
o, (t,—t,)+a’(k,—k,)0?

i ﬂ)’?[le_ﬂx“ q{anl —/,l: (t,—ty))-InY, —a kluZ}

\/0'2, t—t,)+a’ko’

_£1 Zi kle - ﬂ’? o [ _ﬂ:(tz_tl)_a(kz_kl)”z J}

iﬂ)@’le% (D(an,u: (4,~t,)—InY, —a kluzl

hook—o k! \/O't—t k k)zz
A /?,kz Ax,, /1/% 7"!3 _IU* t—t k k
3 sie oo albhle || gy
k520 k,=0 2" \/6 t —t k -k,)o:
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InV - ,u

lnY

—a k,u,

x»/—\

)+a2k 0'

)_a(ks_kZ)”

z

X/Z /1)/;3 X —/U (
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g2 Hie
» e
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= ﬂ,’jj}e_lx“ o InV -, (t,=1,)—InY, —a kyu,
\/O'i (t,—1,)+a’k,0?

~ l_iiﬂ)@q My lk; g —y; (t3—t1)—a(k3—k1)uz
ook k! \/O' (k -k, )O‘Z2

x| 1 ii%}?ﬂe . Z)l? € AXQ ( ) a(kz kl)
ok k! \/a t)+a (k,—k)o’

+ | = 1_ Xlz _ v 3 2 3 2 z
ksz—oz;) ky! \/0' (k3—k2)0'z2
o /’ikl Xfl /’Lkz fz _ - k. —k
% ZZ x, © ' H, ( ) a( 2 1)”22 , (D.10)
ky=0 k=0 k! \/0' (kz —k )O-z

with 4L, —aZa(,u——O'z) and V=K, or K, +p(K,-K,).

i=l
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